MecA, an adaptor protein necessary for ClpC chaperone activity
نویسندگان
چکیده
منابع مشابه
MecA, an adaptor protein necessary for ClpC chaperone activity.
ClpC of Bacillus subtilis is an ATP-dependent HSP100Clp protein involved in general stress survival. A complex of ClpC with the protease ClpP and the adaptor protein MecA also controls competence development by regulated proteolysis of the transcription factor ComK. We investigated the in vitro chaperone activity of ClpC and found that the presence of MecA was crucial for the major chaperone ac...
متن کاملCyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity.
HSP100 proteins are molecular chaperones that belong to the broader family of AAA+ proteins (ATPases associated with a variety of cellular activities) known to promote protein unfolding, disassembly of protein complexes and translocation of proteins across membranes. The ClpC form of HSP100 is an essential, highly conserved, constitutively expressed protein in cyanobacteria and plant chloroplas...
متن کاملAdaptor protein controlled oligomerization activates the AAA+ protein ClpC.
The AAA+ protein ClpC is not only involved in the removal of misfolded and aggregated proteins but also controls, through regulated proteolysis, key steps of several developmental processes in the Gram-positive bacterium Bacillus subtilis. In contrast to other AAA+ proteins, ClpC is unable to mediate these processes without an adaptor protein like MecA. Here, we demonstrate that the general act...
متن کاملRegulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control
Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and...
متن کاملChloroplast molecular chaperone ClpC in Arabidopsis
The molecular chaperone ClpC/Hsp93 is essential for chloroplast function in vascular plants. ClpC has long been held to act both independently and as the regulatory partner for the ATP-dependent Clp protease, and yet this and many other important characteristics remain unclear. In this study, we reveal that of the two near-identical ClpC paralogs (ClpC1 and ClpC2) in Arabidopsis chloroplasts, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2003
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0535717100